Problemet skapar osäkerhet kring och minskar värdet av AI och dataanalys.
AI och dataanalys i molnet ger ofta oklara resultat
Digitalisering & IT
En undersökning som genomförts på uppdrag av SAS Institute visar att det är problematiskt att använda flera olika plattformar för AI och dataanalys. Bland ett flertal problem märks i synnerhet att analys i olika plattformar riskerar att ge olika analysresultat på samma fråga.

Kristoffer Nilsson
Någonting är fel
Du är inloggad som prenumerant hos förlaget Pauser Media, men nånting är fel. På din profilsida ser du vilka av våra produkter som du har tillgång till. Skulle uppgifterna inte stämma på din profilsida – vänligen kontakta vår kundtjänst.
VD-tidningen premium
Läs vidare – starta din prenumeration
Redan prenumerant? Logga in och läs vidare.
– I värsta fall kan det äventyra organisationens AI-satsning, säger Kristoffer Nilsson, analysarkitekt på SAS Institute.
cyEvgTn2O3eDoJjdcXK3MnPEk1Au2W8Ar/mAnAS1JFeSCyJFtz7pyF4MTQo6nbE4vfiSbk755+iB3bm9tiYlphS+1BM2o6FF6z4ACVS53s3iNxNjZAO96Sy6S5DjuqlhyVXwbS0wx0R642+VqBMBjemeNZiYGf6ggmtQ6Jzb0hpwJUTSc+E50jcDtlE+rUA2TxXRP2XT1WpceO5B/9jEYWq+Jo/Osa7FnpRENvO2Ny8LIxALzS+IEcI7fLNz/oFZGXPP3uoKwKeOse7QKVo6scvCh1Uy4qmx7xp/L/w0ssDltWXcPv72k7X2eo/7J3OsJaBJryl7KJTqKhyYA349axY53VXGNxDTFtrL9rdcXxqLyfTsJGVWpXfWMTmGjmVf8utwdvwoVe8MzKbmMeMqoLOCAyMnJnvfFkyENZs8NofSRTFv4C3tjUF5ETGTahTk/Na6O6hgQQOtyi2FXVvD6PpF7yk5JPcxXvkpc/olUAzoeCYq1/eoE3Mo5r69BFWv2IZG4wkTd69KppiW4/V203kafvv2ePgeY5aMakSqWF42hYTQdRY4p4qBC7RzRM/XjpNg5ttVLh6H/tMQwn93E1kWDRe01gUd54wfa/rf0lgZX4NXs0bsP6X0LgjiL3eAPxfhL+mNbxevIsWGM3hNozQzJTsi4gH4usXf010lJiOKEGU6HYAEEGtA+7KuO86wFhxDcdNGGEJYTJ5XPBEK1sKkvtiYLh6J+b8MOHftNYzgFw24hjC2+Zo7xGRL8lQE1H+zIjZpYKAb47j1gugfTQPD8xjTFTV8GlcuT+Fo6xwM7CSmocr2Jr3BVe9PhwXu9RDSdi05qbKy9qwGYxsOIr/HtxUEosTJGn9taEVs+AKKz3gpoe1k9y7HEsRGR/OOrQOlImkql7ZBv9FQGXEwPt8j75+ArZL1w78kkL3fQAuvb35hoOPrn6qjuj3J5WD2pqzzJgst++2lLRFYUefNP7FXcSBTu4R6zJ3xGly5CXz7r0EWJBrgO/GktjgHIvI37aDZhsrZW46QzTfqHoAwneCQapEyUfDzxT//VwYpBfh4ifQ0xxri/5ZnG7EBhcgyjMAievNpKSDUCR8u8vSiKXylqM+ecXPw2tD79OtyX8wvOealtC0kgBBslm1Lt73bNGNtrqrXFKMH6FGeIw8Sr7nzHHsskZBDaTzK6VcV+VmCE69bWtfYzYGHd6EYxm53mFGP8hpfzR2rlJ9YpZey8HhfHLC8aToq1F3Kxm0ArX6bk/AjEISL8UFo5nXA399V14C4mv0yIta3jEPmbL3T2yGWnfjlKW6IdUqxeKA7JyfR2v3BPNHCP4/t/5TM7IIkXZexQD2jlVFX6ztgScrZ5MN6ndAx8Vnn8kh1WLG3QLE3iLCVYFwUMrDE7yUPGuUQbugr+whJuew3i/SMrLu85euDW0M9b6fAVdi3Y0bpVcccPUI1/sVVjtHbL6xO2FmxyD1o/emfFWvvzs0Zfj6v3mMMExkCkHWHfNE9XwabHV5a1AjLswNNlrhgPMRc6di/1ianz+a60mhQcmwqlterSeCH3FINZnurqQlKy+ughAxLgLVfKW9hwGwhxvFRXNOB1n80kHZn66Y8KyFwjq2Mfbqt51+9BcVNPZ5DIXipuiV3W0PwjkHrd0ob6oaMgFAdeITQhprR6Sk6KME3jPXBsh4lU7EUnLe90kTEAmVyH/MsqIcmkuQecOPkVFEJFPbizXKGuG4JPxZ9PXQqAkeeF7AHkGCRGLgmYwd4lPGt250E/Tae+0UKzHugBW8jHfHt5dNk14UXnhvVw87M2wrv9zyWVN7+GfHEpKL5hYKJkFzUDQjwIE/C6F9dsryK3Sw27ONM0d/DfIa1R76UIhFtm0+Au+7s0H7eh4cm/mZI9lsWVoFB/k9Dak1kDfvlYhyz+m98aGSsjIofRbDkkdQxFKs/CIUmstLGbd4DFGROgr/NQUF+UAID2YX9F4z5Hsw7hS5Vxcj+9PfxVi5IMoTisnj6hfLdbsAgZXu6PT+AklKVTAKYFMyR5Iz+YwS/KHOJlJmji/UzuvgrUv3D1zqh1Oah4IiNQLhJnedHt8HYZ0nEUzNBBG+oYi9PcVQn+cCFsZu7z5YLEZfzn/s3QVIqaM+YS2PTaJtX9SZg+2TQiz5DjZs5OIkea8R30/sesoRTsfj7xOafCl+4xJwDUKGbjBS0nQ/z2BNeam80lXaAiYEw6kikhpAaFj7YcuUcv2aVtn8talc5SGv1vCfPHIMYqFgGJ8cKFx/PyF/8q8Uh+DOx6jAzyFC1YnadJu9K3saiXsdtmvwOu8+S9Z7lLWnaZftWIQtNxIW1x1h952aV7N8ygkx9PbQ7amPupFNS7jjbk5edjZFv1vXalXp7+UeaowQKalAXKKfcf5cwnG8XYU8z1ScK0es6ppFv3b6lCjdRvYLsgtGgtGN97SeGdcqUyROdrAppbG6lNncpYXNg4MRjBnfvk2yS/ncClqwqxnlg57aR/gzmiijtFZ6B4cH1gI8nGkzWDX4QnuncbsNj6FZo7cqTqNJVh4K3ZZrA4FNHLeoiG9PnlnuarPuqzUoJ8Cmy14neZdh3LsGoyG4ZAgl65EQ/ma7Q68ATEsMLs5bdShefDsWvt/OgX6tSKeNy6hjJgrZUL81pCcy5qVB8EZAQ8tuU5GsO98Vo6GTUfZ1sNd1L9OW7UjSG7GVMRktvBYkigvj/NWewdiuBBDuoHYasP5RtAHp5OTSOflhsqGFqwCNCw5wHjeVE/eDziwyoxGFBxoKYc3LSnXUYfv2BDqFS/6eg4vWqdPUNsstPsReQVLi0nEIVDS3CpxQKKMZSe9KyN/VM2fuaUm2N+z54BAU8LNgKQ9B56oVTgl0ihKpfdtzNUyUj4gSARaG2L5ORc1QltEkjvE6kYrsGpnrntZcAjM1yfj0Vrvsrot8u1Bd6Hey44xEwXoKcNm+tZ/BXsWil71TKDlCVC9fb+zcG8SLvReM01utiEsZKkkQda1AxF/Gca21heyvztLlQxT+d99FD0ssiKK8SmYO/gy8GAUk9NuS0IYB1GQKY99wrFsBccafTIqadpxN2AwZhUub1qIeCte2pCgg3RX7QPhqcH5mKWbOZ9VeUcmC15TrupA76kRb/GXRN3XaPeI8mvPrFzEQgzWmpMBvhEGXCLlm9F2VzzrGz+OxJFDQORLrcDTG3roi1r5zQC2cDyOO9eLTCCCSSpw0dV11vK7R7K3M9KJFnpImZRfYl3o5/QN7wLqIBZB+AmfIQYjJasZWQPMzGNx5vvn6YHVNlgxIrybPg7FYQNkyRRsnBRS86R6aYqwCn+vPQB696j2Wh2H8sJkLrloaExUj/r58P2XmqXvTdqUbKUkAEBvd8WHWRUPuSbzMGuiR35i4XKSaXhHr8qgdMCH6xSsR/yefYr1yM2hhQSkeD0p2sGw++U8CmWYFAsHsrPhyzS0rGIg5n3oJOyiX/mFnl5j5EsM8NEeSGQ1IGIfWD7F54srk4DDf9v1vQOzIZk0YnF6aRlVLCwyFAip1D8/HI+qfiIP0VpOVAOvon98RmKHo3Irq4wP5YkZ/0wrh3YDt6Ro4OyBZhfAkU1GHJw+kpXVUPMgmkglARSwDeCGPD8zxEZN+Zs/S5gvhy8YqKM3NeShCUtCm477bbspHLS+t+YHJoYp3YWr2KpPFfDKCap99S32+s6l5fmiuQdwnEel+q/vf56gUvNef3wm1Mtf82qthFFN6ELR4HweiIgsfOlJcIDwTI9F5PMQH9LdxC1UKSJgjvgKh7cCANRtKjYZg8Na3dXGVozZrYMHtB4v5E2nStQcGUVgpX/fwL3rwnW1lT6q02HIx+bxHQwIG5w+cjSNyUeumHvemErXcebO/YWJLwD/zEXq3MyntRSe9I0ze0Ew6QG3RN49jYcZIxmZo1AQ9tAACXsV4lxJtebZB8WzVJu4xLbAkCYe8oetFcHkMbu5O4p3cMqXBZDQMRsn1TphW0J1DZ/Jl+lKG30bFIZ0qZXcjElaLAXbNNkoyiagsuiI9kiXM8alokT41byyGOydHXnobA31fuujyiVZZchZLrVMEbPMNDAu62EL51CKcTaIRF/Ce13uEfzryPkFdu417NTK+SEMybiorXKCDseNYOSICdezcduOZPN5lgbivXwUBsKtCVfYTvFwrQV3ylisLXLVMVIFz/1DasF+9lMoZY7R1JnnYFNw4LHpu2vqr9TRoQ17mQtseabh/xLuCACYokjds4AuIx/XuDTj16bec3ifwfRkeo6Y1ckMQD0l6c/AylgE7Qjui2Ot9lpcjZ26fmxhUwhHgsRsbdSpciR6zNixkQ/KTI0QfyzIEOt23MMACK3wItpptV6n9KwiUMzmYJGeRQXG8GzNonjmEgaNV/lnqh8JYR09xyxDLKD9ShQTflcWpCr6NCZEX70VISK+NB5fHGaRTMdPIrR+YgDYaIYyEWDDawzcb439p7yk6Lz2njNwU7mcWn6bRhx5ze5O4RnvTTE+3zbiVgVfDzkevQJIsSTwQlO7MnDLiJyhlMoyLzry+f044OMK3xGjRM3TgbqdWZN1dOTc3G6+35GMNKSGpEy5ZVV5ww6fYNqrh7cQXEsGA4soKvTBwkVDwbYFWzlTqIm86H+XIcBdc9DaCG3gkDAhjLcSmqR7uz6bSdR5Yi6/H6nkyuc5Ij9kJIYCZeGayhYRvAxfOTUIFTGfYGBtQ5r0gMaOVdzLteMDDa0A5UaNKNM59A63JX696Ce9Vb3BzHmUeMfo3ngQj535j5JCTh00TDbexLlSg0ZcUSSH0V0u5+wdaCncvGUvCKetQyuhvNU7giWOH864kStUw+45hcNrfXBPSP3AqqAJtnGD5Cm1wbf1swzdeKVOuAQmAX9IpWKxxjybq+8R/6RQUms5yrKy+opNmaO+GYVruVT4etFMqG6B/TXJnz/qFgl9NGj8hAEb1Jcz08MMXYPfgj/Z5G/vfzg6NsxhbwZh9OLLZExcXzxgD9eJ5+8T2o4z9F+hs4bniLD9ywdkBc8ydFS9DzJkQJEkb4J4cODN3iAmcOVvhW5h+FCRQzTnQa3TuKeDwyb7esR2E8wMuPG8KbK2d7BtNB8/aPdAPHH/e15Hm8ZDsN04oZav9803t7bOwKdorhHUpb9ChmCCD3EkDBU++ybhIJfEg4UyD+1AjUR15LCvZNpq+vd5KIi7oZxOooHM4NZqU572n6VO2TYRnMSAw4ecfVIQusKURtO/Ua2X9BWf+CP8LbxbPUlUzPSuLWpYt/Uv2SfZ17+fd4cYY0rKa/U22ulvcIwcDfJeNPbmmix6mITau+IER06tHcL5QZdPgTsFy0fhW7b8RO6ILaL14mt9OL6b1owYdEIuX1Bc0PGpqFAta3NafrqKgCPUNKe1a7fSzaYM6Wi0hcbslZ/9tvk2f7xbrCu7V4gxHplb26PtU10OLV00+Zxc4AD+5SZHg4BDK1Dbb6Ba7IgsyUoT89KodAdtPu9qcMOlMaTfFv3cQsi2qWF+W/vE2MSCUL4xIKeHync/GkKRPKiP+raHAeYlgb6H9EXJ+C98nJa8Mq9ECLPX0LUD8uJj8Bzx3GFUtlf1WgzssWogQgRsVnnigx3xEuohGlZiCXc8gJPFdpCaqgaDXYRjX//FGFCmPiym3cGMf13A0w6rYC8mGud3AnduyKqWgWFKIAUjsI5iNazXyTe3TcuOp4gXFKVNVQCb5FMB6qIiQzWx42DDTKZYySRd1+RaJ2paeTRyWlA/rb982nu01uxDZkOokOjDxZ4yIiV20Q51PE0qKlko9zt4e6LlFtQyn100HfUfHrB9jq3u2gQ/tHbS84Ow==